Abstract

Summary Selective O 2 utilization remains a substantial challenge in synthetic chemistry. Biological small-molecule oxidation reactions often utilize aerobically generated high-valent catalyst intermediates to effect substrate oxidation. Available synthetic methods for aerobic oxidation catalysis are largely limited to substrate functionalization chemistry by low-valent catalyst intermediates (i.e., aerobically generated Pd(II) intermediates). Motivated by the need for new chemical platforms for aerobic oxidation catalysis, we recently developed aerobic hypervalent iodine chemistry. Here, we report that in contrast to the canonical two-electron oxidation mechanisms for the oxidation of organoiodides, the developed aerobic hypervalent iodine chemistry proceeds via a radical chain mechanism initiated by the addition of aerobically generated acetoxy radicals to aryl iodides. Despite the radical chain mechanism, aerobic hypervalent iodine chemistry displays substrate tolerance similar to that observed with traditional terminal oxidants, such as peracids. We anticipate that these insights will enable new sustainable oxidation chemistry via hypervalent iodine intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.