Environmentally friendly bioleaching of gold and silver from electronic waste using cyanogenic bacteria has emerged as a promising approach. In the process of cyanide bioleaching, cyanide ions produced by cyanogenic bacteria form complexes (such as AuCN and AgCN) with metals in the waste structure and lead to their dissolution. The recovery rate of these valuable elements during bioleaching is influenced by extracellular polymeric substances (EPS). For the first time, this study presents an investigation into the role of EPS from Pseudomonas atacamensis in the bioleaching of gold and silver from spent telecommunication printed circuit boards (STPCBs). The experimental results demonstrate that, after 6 days of bioleaching, gold and silver recoveries reached 22% and 36.2%, respectively. Complementary analyses employing FE-SEM and attachment tests shed light on the interactions between EPS, bacterial attachment to particle surfaces, and biofilm development stages during gold and silver bioleaching. Notably, the most significant bacterial attachment occurred on the fourth day of bioleaching. Zeta potential tests conducted on bacteria and EPS provided insights into the potential absorption of soluble cations such as Au+ and Ag+ by EPS. Furthermore, 250 mg/L polyvinylpyrrolidone (PVP) effectively removed EPS from the particle surfaces, improving gold and silver recovery rates, reaching 26% and 43.2%, respectively. These findings highlight the importance of understanding the role of EPS in bioleaching processes and offer insights into enhancing gold and silver recovery from electronic waste.
Read full abstract