BackgroundImmunoglobulin lambda (Igλ) has been reported to be expressed in many normal and tumor tissues and cells. However, the function and clinical significance of tumor-derived Igλ remain unclear.MethodsThe differential expressions of Immunoglobulin Lambda Constants (IGLCs) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) were examined with The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) databases. The effects of IGLCs on patient clinical phenotypes and prognosis were explored via bioinformatics analyses based on the TCGA databases. We used the bioinformatics analyses based on the TCGA and GTEx databases to elucidate the correlations among IGLC expressions, immunomodulator expressions, tumor stemness, and infiltration scores of tumor infiltrating immune cells. Co-immunoprecipitation (Co-IP) and silver staining combined with liquid chromatography-tandem mass spectrometry (LC–MS/MS) were used to obtain potential tumor-derived Igλ-interacting proteins. Functional annotation of candidate proteins identified by LC–MS/MS was performed in Database for Annotation, Visualization and Integrated Discovery (DAVID). The bioinformatics analyses of 7 IGLCs in CESC and normal cervical tissues were performed based on TCGA, GTEx, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases. Protein–protein interaction (PPI) network was analyzed based on tumor-derived Igλ-interacting proteins in Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Immunohistochemistry (IHC) was used to validate the expressions of IGLCs in CESC.ResultsWe found that the expressions of the majority of IGLCs (IGLC1, IGLC2, IGLC3, IGLC4, IGLC5, IGLC6, and IGLC7) were upregulated in CESC tissues, compared with those in normal cervical tissues. The expressions of IGLC5 and IGLC7 had significant difference in different pathologic metastasis (M), one of tumor, node, and metastasis (TNM) staging system, categories of CESC. Except for disease-free interval (DFI), 4 IGLC (IGLC1, IGLC2, IGLC3, and IGLC7) expression levels were positively associated with patient overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) respectively in CESC tissues. 5 IGLC (IGLC1, IGLC2, IGLC3, IGLC6, and IGLC7) expressions were positively correlated with the expressions of a majority of immunomodulators respectively in CESC tissues. Tumor stemness was negatively correlated with the expressions of 4 IGLCs (IGLC1, IGLC2, IGLC3, and IGLC7) respectively in CESC tissues. Except for IGLC4, IGLC5, and IGLC7, 4 IGLC (IGLC1, IGLC2, IGLC3, and IGLC6) expressions were positively correlated with infiltration scores of 6 tumor-infiltrating immune cells (B cell, T cell CD4, T cell CD8, neutrophil, macrophage, and DC). After analyses of the above bioinformatics data of tumor-derived Igλ, Co-IP and LC–MS/MS were used to confirm that 4 proteins (RPL7, RPS3, H1-5, and H1-6) might interact with tumor-derived Igλ in cervical cancer cells. Functional analyses of these candidate proteins showed that they interacted with many proteins and were involved in various cellular biological processes. Finally, IHC was used to further confirm the above bioinformatics results, it was indicated that the expression level of Igλ in cervical adenocarcinoma and cervical squamous cell carcinoma was higher than that in normal cervical tissue.ConclusionThis study comprehensively investigated the functions of tumor-derived Igλ and its interacting proteins based on bioinformatics analysis and the potential value of Igλ as a prognostic and therapeutic marker for CESC, providing new direction and evidence for CESC therapy.