Bioceramics are engineered materials that achieve their applications in the medical field. Bioceramics are promising inorganic materials to create scaffolds for bone regeneration due to their desirable properties, such as biocompatibility, osteoconduction, and their similarity with bone composition. Bioceramics can operate as tissue replacement and can be used for coating metal implants to increase their biocompatibility. Bioceramics are classified into three types: bioinert ceramics, bioactive bioceramics, and biodegradable ceramics. There are different methods for the fabrication of bioceramics, they can be prepared by conventional powder processing methods or by some new unconventional methods. Bioceramics can be fabricated by a sintering process, which takes place through the hardening of the green bodies at a relatively high temperature lower than their melting point. Nowadays, microwave sintering is excellent in both heating efficiency, saving energy and time, and the concomitant processing cost. There are other methods used to obtain bioceramics; such as sol-gel, gas-foaming, gel-casting, and freeze-casting techniques. Recently, the CAD/CAM technique (computer-aided design/manufacture) was used in the fabrication of bioceramics and is applied in the dentistry field. The application of bioceramics connects to the repair of the skeletal system, which consists of joints, bones, and teeth, as well as both soft and hard tissues. Bioceramics can be used to replace parts of the cardiovascular system, especially heart valves.