Fluctuation in calpionellid, foraminiferal, and nannofossil diversity and abundance are documented in two successions located in the eastern part of the Upper Jurassic–Lower Cretaceous carbonate platform of the Southern Carpathian area, Romania. The lower part of the studied sections consists of upper Tithonian–upper Berriasian bioclastic limestones. This age is supported by the presence of the calpionellid assemblages assigned to the Crassicollaria, Calpionella, and Calpionellopsis Zones. Based on biostratigraphical data, a gap was identified within the uppermost Berriasian–base of the upper Valanginian (the interval encompasses the Boissieri, Pertransiensis, Campylotoxum, and lower part of the Verrucosum ammonite Zones). Hence, the upper Tithonian–upper Berriasian bioclastic limestones are overlain by upper Valanginian–lower Hauterivian pelagic limestones (the interval covered by the NK3B and NC4A nannofossil Subzones). A detailed qualitative and semiquantitative analysis of the nannoflora was carried out over this interval. To estimate the surface water fertility conditions, the nannoplankton-based nutrient index (NI) was calculated. The fluctuation pattern of NI allow us to recognize four phases in the investigated interval, as follows: (1) phase I (covering the lower part of the NK3B nannofossil Subzone and the upper part of the Verrucosum ammonite Zone, respectively) is characterized by low values of the NI (below 20%), by the dominance of the genus Nannoconus in the nannofloral assemblages (between 60–70%), and moderate abundance of Watznaueria barnesae (up to 23%), while the high-fertility nannofossils constitute a minor component of the assemblages; (2) phase II (placed in the NK3B nannofossil Subzone, extending from the top of Verrucosum ammonite Zone, up to the lower part of the Furcillata ammonite Zone) is characterized by increase of NI above 30%, a decrease of nannoconids (up to 50% at the top), while Watznaueria barnesae increases in abundance up to 27%. The fertility proxies ( Diazomatolithus lehmanii, Zeugrhabdotus erectus, Discorhabdus rotatorius, and Biscutum constans) represent again a minor component of the recorded nannofloras (less than 7% in both sections), but they have an ascending trend; (3) phase III (which encompasses the boundary interval of the NK3B and NC4A nannofossil Subzones, corresponding to the upper part of the Furcillata ammonite Zone) contains higher NI values (over 35%, and up 52% towards the base of this phase), an abrupt nannoconid decrease (down to 20%), higher abundance of Watznaueria barnesae (over 30%), while the fertility nannofossils became an important nannofloral component, jointly amounting to almost 20%; (4) phase IV (identified within the NC4A Nannofossil Zone and corresponding to the boundary interval of the Furcillata and Radiatus ammonite Zones) is characterized by a decrease of NI to 25%, a recovery of the nannoconids up to 40%, a decline in abundance of Watznaueria barnesae to 25%, together with a pronounced drop of fertility taxa, which make together no more than 8%. We assume that maximum of eutrophication in the studied interval from the Southern Carpathians was in the Furcillata ammonite Zone. Notably, within the phases 2 and 3, the morphological changes identified in the benthic foraminiferal assemblages (the predominance of flattened morphologies, together with the presence of conical and trochospiral inflated forms), as well as the occurrence of the Zoophycos trace fossils and pyrite framboids, indicate dysaerobic conditions. In the Southern Carpathians, the late Valanginian–early Hauterivian biogeographical changes are coeval with the initiation of the carbonate platform drowning.
Read full abstract