Concentration-discharge (C-Q) relationships provide insight into solute transport and biogeochemical processes for watersheds. A 30+ year, high-resolution dataset from the North Appalachian Experimental Watershed (NAEW) offers an unparalleled opportunity to explore land use and land management impacts on C-Q relationships for small watersheds of varying land management histories (agricultural to forested). The NAEW was among the few hydrologic research sites where storm event runoff was sampled using proportional sampling. This method captures the concentration-discharge behavior associated with land use more effectively than instantaneous sampling, which favors rising limb or falling limb dynamics. In this study, we explore C-Q relationships by investigating baseflow and storm event flow across their total behavior. We also build a systems-understanding by comparing chemostatic behavior to soil geochemistry and land use history. Highly managed agricultural watersheds with no associated stream baseflow demonstrate near-chemostatic behavior for most solutes, while mixed use and forested watersheds with associated streams are more mutable depending on whether primary sources of water were groundwater or surface water. Using this unique high-resolution dataset, we show that concentration-discharge relationships are influenced by soil and baseflow geochemistry, pore fluid concentration, and land type/land use legacy effects.