Abstract

Plant roots and associated microbes release a diverse range of functionally distinct exudates into the surrounding rhizosphere with direct impacts on soil carbon storage, nutrient availability, and contaminant dynamics. Yet mechanistic linkages between root exudation and emergent biogeochemical processes remain challenging to measure nondestructively, in real soil, over time. Here we used a novel combination of in situ microsensors with high-resolution mass spectrometry to measure, nondestructively, changing exudation and associated biogeochemical dynamics along single growing plant roots (Avena sativa). We found that metabolite and dissolved organic carbon (DOC) concentrations as well as microbial growth, redox potential (EH), and pH dynamics vary significantly among bulk soil, root tip, and more mature root zones. Surprisingly, the significant spike of rhizosphere DOC upon root tip emergence did not significantly correlate with any biogeochemical parameters. However, the presence of sugars significantly correlated with declines in EH following the arrival of the root tip, likely due to enhanced microbial oxygen demand. Similarly, the presence of organic acids significantly correlated to declines in pH upon root tip emergence. Overall, our in situ measurements highlight how different exudates released along growing roots create functionally distinct soil microenvironments that evolve over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.