One of the best‐studied aspects of the K‐Pg mass extinction is the decline and subsequent recovery of open ocean export productivity (e.g., the flux of organic matter from the surface to deep ocean). Some export proxies, including surface‐to‐deep water δ13C gradients and carbonate sedimentation rates, indicate a global decline in export productivity triggered by the extinction. In contrast, benthic foraminiferal and other geochemical productivity proxies suggest spatially and temporally heterogeneous K‐Pg boundary effects. Here we address these conflicting export productivity patterns using new and compiled measurements of biogenic barium. Unlike a previous synthesis, we find that the boundary effect on export productivity and the timing of recovery varied considerably between different oceanic sites. The northeast and southwest Atlantic, Southern Ocean, and Indian Ocean records saw export production plummet and remain depressed for 350 thousand to 2 million years. Biogenic barium and other proxies in the central Pacific and some upwelling or neritic Atlantic sites indicate the opposite, with proxies recording either no change or increased export production in the early Paleocene. Our results suggest that widespread declines in surface‐to‐deep ocean δ13C do not record a global decrease in export productivity. Rather, independent proxies, including barium and other geochemical proxies, and benthic community structure, indicate that some regions were characterized by maintained or rapidly recovered organic flux from the surface ocean to the deep seafloor, while other regions had profound reductions in export productivity that persisted long into the Paleocene.
Read full abstract