In the context of increasing pressure regarding the sustainable utilization of food waste in a circular economy, one of the trends is their biological transformation, through anaerobic digestion, into biogas as a renewable source of energy. We presented the physical-chemical properties of the main categories of food waste from different sources: dairy, meat, and poultry, fish, fruit and vegetable, cereal and bakery, brewing and winery industries, and others. Due to the high organic load, the presence of a multitude of nutrients, and an insignificant amount of inhibitors, food waste can be successfully used in the biogas production process in co-digestion with other materials. Physical (mechanical and thermal), chemical (alkali, acid, and oxidative), and biological (enzymatic, bacterial, and fungal) techniques have been widely used for pretreatment of different substrate types, including food waste. These pretreatments facilitate the degradation of pretreated food waste during anaerobic digestion and thus lead to an enhancement in biogas production. The purpose of this study is to review the situation of food waste generated in the food industry and to formulate the main trends of progress in the use of this waste in the anaerobic digestion process.
Read full abstract