The dynamics of ammonium accumulation and mitigation control in anaerobic digestion of chicken manure under the recycled utilization of liquid digested slurry were investigated by using an integrated approach in two laboratory-scale semi-continuously stirred tank reactors. In the reactor with direct recycled utilization of the anaerobic digested liquid slurry, total volatilized fatty acids (in CH3COOH) and NH4+-N increased from 1600mg/L to 8000mg/L and from 2600mg/L to 5000mg/L, respectively. The daily volumetric biogas production decreased from 1.4±0.1L/(L·d) to 0.8±0.1L/(L·d) with a reduction efficiency of 43±4%. Air stripping was integrated for ammonium mitigation of recycled liquid digested slurry and was shown to effectively reduce the ammonium to 3000mg/L. Correspondingly, the biogas production was recovered back to 1.4±0.1L/(L·d). This indicated the potential of the integration of air stripping for ammonium mitigation in an anaerobic digestion process with liquid digested slurry recirculation.