Inoculating sulfate-reducing bacteria (SRB) habitats offers an eco-friendly method for treating sulfate-metal laden wastewater, characterized by high sulfate levels, low pH, and elevated heavy metals. This study optimizes source habitat selection of SRB by evaluating groundwater, sewage sludge, and lake sediment, focusing on their suitability and adaptability to aerobic-anaerobic transitions in industrial settings. Sewage sludge, with its slightly acidic pH, reducing environment, and high nutrient levels (Total organic carbon: 207.53 g kg−1, Total nitrogen: 47.12 g kg−1), provides robust SRB potential, as supported by its highest diversity index. However, heavy metals and polycyclic aromatic hydrocarbons pose application challenges. All habitats effectively reduced metal concentrations anaerobically, with Cu removal reaching 95%–99%, and groundwater achieved the highest chemical oxygen demand reduction (63.6%) aerobically. Sludge and sediment showed high biomass and extracellular polymeric substances (EPS) accumulation, while groundwater's nucleic acid-rich EPS enhanced metal immobilization, resulting in stable residual metal forms but with potential remobilization under oxidative conditions. Microbial analysis revealed that Proteobacteria and Firmicutes were key players during transitions, with the highest SRB abundance in groundwater. SRB composition varied across habitats, with Sedimentibacter (13.04%), Desulfovibrio (6.33%), and Desulfomonile (8.1%) dominating in groundwater, sludge, and sediment, respectively, during the anaerobic stage. Functional analysis highlighted sludge's persistence in sulfate reduction under aerobic conditions, while groundwater's limited nitrogen cycle involvement indicated broader biogeochemical limitations. Collectively, these findings highlight strengths and limitations of each habitat as SRB inoculum source, emphasizing the importance of tailored anaerobic-to-aerobic strategies for effective wastewater management.