There is growing interest in the functional ecology of poikilohydric nonvascular photoautotrophs (NVPs), including 'cryptogamic' bryophytes and lichens. These organisms are structurally important in many ecosystems, contributing substantially to ecosystem function and services, while also being sensitive to climate change. Previous research has quantified the climate change response of poikilohydric NVPs using predictive bioclimatic models with standard climate variables including precipitation totals and temperature averages. This study aimed for an improved functional understanding of their climate change response based on their growth rate sensitivity to moisture and light. We conducted a 24-month experiment to monitor lichen hydration and growth. We accounted for two well-known features in the ecology of poikilohydric NVPs, and exemplified here for a structurally dominant lichen epiphyte, Lobaria pulmonaria: (i) sensitivity to multiple sources of atmospheric moisture including rain, condensed dew-formation and water vapour, and (ii) growth determined by the amount of time hydrated in the light, driving photosynthesis, referred to as the Iwet hypothesis. First, we found that even within an oceanic high-rainfall environment, lichen hydration was better explained by vapour pressure deficit (VPD) than precipitation totals. Second, growth at a monthly resolution was positively related to the amount of time spent hydrated in the light, and negatively related to the amount of time spent hydrated in the dark. Using multimodel averaging to project growth models for an ensemble of future climate change scenarios, we demonstrated reduced net growth for L. pulmonaria by the late 21st Century, explained by extended climate dryness and lichen desiccation for periods when there is otherwise sufficient light to drive photosynthesis. The results further emphasise a key issue of photoperiodism when constructing functionally relevant models to understand the risk of climate change, especially for poikilohydric NVPs.