Fire causes changes in many soil attributes, depending on multiple factors which are difficult to control in the field, such as maximum temperature, heat residence time, charred material incorporation, etc. The objective of this study is to evaluate the effect of a gradient of fire intensities on soils at the cm scale. Undisturbed topsoil monoliths were sampled under scrubs in the subalpine stage in the Southern Pyrenees (NE Spain). They were burned, under controlled conditions in a combustion tunnel, to obtain four charring intensities (CIs), combining two temperatures (50 and 80 °C) and two residence times (12 and 24 min) reached at 1 cm depth from the soil. Unburned soil samples were used as a control. All soils were sampled, cm by cm, up to 3 cm deep. The following soil properties were measured: soil respiration (basal, bSR and normalized, nSR), β-D-glucosidase (GLU), microbial biomass carbon (MBC), glomalin-related soil proteins (GRSPs), soil organic carbon (SOC), labile carbon (DOC), recalcitrant organic carbon (ROC), total nitrogen (TN), soil pH, electrical conductivity (EC) and soil water repellency (SWR). Even at low intensities, GLU, SOC and total GRSP were significantly reduced and, conversely, SWR was enhanced. At the higher CIs, additional soil properties were significantly reduced (MBC and C/N) or increased (DOC, ROC, nSR, easily extractable GRSP). This study demonstrates that there is a differential degree of thermal sensitivity in the measured biochemical soil properties. Furthermore, these properties are more affected at 0–1 cm than at 1–2 and 2–3 cm soil thicknesses.
Read full abstract