COVID-19 represents a multi-system infectious disease with broad-spectrum manifestations, including changes in host metabolic processes connected to the disease pathogenesis. Understanding biochemical dysregulation patterns as a consequence of COVID-19 illness promises to be crucial for tracking disease course and clinical outcomes. Surface-enhanced Raman scattering (SERS) has attracted considerable interest in biomedical diagnostics for the sensitive detection of intrinsic profiles of unique fingerprints of serum biomolecules indicative of SARS-CoV-2 infection in a label-free format. Here, we applied label-free SERS and chemometrics for rapid interrogation of temporal metabolic dynamics in longitudinal sera of mildly infected non-hospitalized patients (n = 22), at 4 and 16 weeks post PCR-positive diagnosis, and compared them with negative controls (n = 8). SERS spectral markers revealed distinct metabolic profiles in patient sera that significantly deviated from the healthy metabolic state at the two sampling time intervals. Multivariate and univariate analyses of the spectral data identified abundance dynamics in amino acids, lipids, and protein vibrations as the key spectral features underlying the metabolic differences detected in convalescent samples and perhaps associated with patient recovery progression. A validation study performed using spontaneous Raman spectroscopy yielded spectral data results that corroborated SERS spectral findings and confirmed the detected disease-specific molecular phenotypes in clinical samples. Label-free SERS promises to be a valuable analytical technique for rapid screening of the metabolic phenotype induced by SARS-CoV-2 infection to allow appropriate healthcare intervention.