There are considerable studies focusing on impacts of straw returning on PAHs degradation and bioavailability in PAHs-contaminated upland soils, while similar research in paddy soils is limited. Incubation experiments and pot trials were conducted to study effects of straw returning on PAHs degradation in paddy soils and PAHs accumulation in rice, respectively. There are threshold effects of straw returning on PAHs degradation in PAHs-contaminated paddy soils. The inflection point of PAHs degrading was recorded under 0.8 % wheat straw treatment (conventional (CS) and pretreated wheat straw (PS)), which increased PAHs degradation by 18.13–32.36 %. The lowest PAHs concentrations in rice were recorded under 1 % straw (CS and PS) treatment, which was attributed to the highest PAHs degradation in rhizosphere soils. Compared to CS treatment, PS treatment significantly (p < 0.05) increased PAHs degradation by 7.93–10.28 % and PAHs concentrations in rice by 12.38–45.87 % due to that increasing dissolved organic carbon (DOC) enhanced PAHs concentrations in porewater of rhizosphere soils. Higher diversity enhanced the metabolic pathways and function genes to degrade PAHs by improving bacterial phenotypes and biochemical processes under 1 % wheat straw and PS treatment. The present study firstly demonstrated that the effects of straw returning on PAHs degradation in PAHs-contaminated paddy soils and PAHs concentrations in rice depended on amount and methods of straw returning.