Bioabsorbable textile scaffolds are promising for bone tissue engineering applications. Their tuneable, porous, fibre based architecture resembles that of native extracellular matrix, and they can sustain tissue growth while being gradually absorbed in the body. In this work, immortalized mouse calvaria preosteoblast MC3T3-E1 cells were cultured in vitro on two warp-knitted bioabsorbable spacer fabric scaffolds made of poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB), to investigate their osteogenic properties. Scaffold structure and yarn properties were characterized after manufacturing. Cells were seeded on the two scaffolds and treated with osteogenic media for up to 35 days. 
Both scaffolds supported similar cell growth patterns, featuring a higher cell density on multifilament yarns, which could be beneficial to drive cell proliferation or related phenomena in localized area of the construct. The increase in ALP activity and the calcium deposition observed on some PLA and P4HB scaffolds after 28 and 35 days of culture, confirm their potential to support MC3T3-E1 cells differentiation, however inconsistent mineralization was observed on the scaffolds. 
Due to their structural and morphological features, ability to support cell attachment and growth, and their limited osteogenic potential, these PLA and P4HB bioabsorbable textile scaffolds are recommended for further investigation for bone tissue engineering applications.
Read full abstract