Iron sulfate solutions and the extremophile lifeforms that can live within them are industrially and environmentally important in many applications and require proper assessments of solution properties. Determination of saturated dissolved oxygen concentration is an important parameter for monitoring iron biooxidation processes. However, its determination is not so straight forward using commercially available dissolved oxygen meters. Such meters utilize internal calculation models based on the saline properties of seawater which can be easily overlooked. A method for determination of the saturated dissolved oxygen concentration in acidic iron sulfate solutions with the inclusion of other inorganic salts is proposed in this work using the biooxidation of ferrous iron as an indicator measured with redox potential and converted to oxygen concentration through bioreaction stoichiometry. The technique was tested on a BioGenerator system over the course of four days and proved satisfactory in establishing a value for the saturated dissolved oxygen concentration of the bioreactor broth. Study of the lifespan properties of the microorganisms in absence of ferrous iron substrate was briefly examined to determine the effective handling period of solutions for assessment.
Read full abstract