In this contribution, a methodology for the optimal tuning of controllers of complex systems based on meta-heuristic techniques is proposed. Two bio-inspired meta-heuristic optimization algorithms -the Antlion Optimizer (ALO) and the Whale Optimization Algorithm (WOA)- have been applied to two different dynamic systems: the Hoop & Ball electromechanical system, a system where a linearized description is adequate; and to a Wind Turbine-Generator-Rectifier, as an example of a complex non-linear dynamic system. The performance of the ALO and WOA techniques for the tuning of conventional PID controllers is evaluated in relation to the number of agents nS and the maximum number of iterations nMaxIter; given the stochastic nature of both methods, repeatability is also addressed. Finally, the computational effort required for their implementation is considered. By analyzing the obtained metrics, it is observed that both methods provide comparable results for the two systems considered and, therefore, the ALO and WOA techniques can complement each other by exploiting the advantages of each of them in controller tuning.
Read full abstract