In this paper, a double-skin steel building-demonstrator, set up using panels of five bio-based insulators and a classical mineral insulating material, is studied. The panels used in the demonstrator are made from industrially manufactured and commercialized bio-materials. To assess the suitability of these panels for use in cold formed steel envelope buildings, their advantages and/or the drawbacks (if any) of the synchronized records of temperatures, relative humidity and thermal flux of each panel are obtained using a system of continuous measurements. Data from 6 months of records in the roof of the demonstrator are used to assess the infield properties of the panels and the seasonal evolution of these properties in relation to the presence of the vapor barrier. The thermal resistance of each panel is determined from these data using two methods: the ISO 9869-1:2014 based on the Heat Flow Meter (HFM) method and an inverse problem identification method. All bio-sourced panels manifest higher thermal resistance than the classical insulation system, whatever conditions of use with or without barrier vapor. The seasonal variations of thermal properties are attenuated when a vapor barrier is used. No risk for water condensation inside the bio-insulations is revealed so far.
Read full abstract