Understanding the finely orchestrated interactions leading to or preventing programmed cell death (apoptosis) is of utmost importance in cancer research because the failure of these systems could eventually lead to the onset of the disease. In this regard, the maintenance of a delicate balance between the promoters and inhibitors of mitochondrial apoptosis is crucial, as demonstrated by the interplay among the Bcl-2 family members. In particular, B-cell lymphoma extra-large (Bcl-xL) is a target of interest due to the forefront role of its dysfunctions in cancer development. Bcl-xL prevents apoptosis by binding both the pro-apoptotic BH3-only proteins, like PUMA, and the noncanonical partners, such as p53, at different sites. An allosteric communication between the BH3-only protein binding pocket and the p53 binding site, mediating the release of p53 from Bcl-xL upon PUMA binding, has been postulated and supported by nuclear magnetic resonance and other biophysical data. The molecular details of this mechanism, especially at the residue level, remain unclear. In this work, we investigated the distal communication between these two sites in Bcl-xL in its free state and when bound to PUMA. We also evaluated how missense mutations of Bcl-xL found in cancer samples might impair this communication and therefore the allosteric mechanism. We employed all-atom explicit solvent microsecond molecular dynamics simulations, analyzed through a Protein Structure Network approach and integrated with calculations of changes in free energies upon cancer-related mutations identified by genomics studies. We found a subset of candidate residues responsible for both maintaining protein stability and for conveying structural information between the two binding sites and hypothesized possible communication routes between specific residues at both sites.