CD18 integrins are adhesion molecules expressed on the cell surface of leukocytes and play a central role in the molecular mechanisms supporting leukocyte migration to zones of inflammation. Recently, it was discovered that CD11a/CD18 is shed from the leukocyte surface in models of inflammation. In this study, we show that shedding of human CD11/CD18 complexes is a part of synovial inflammation in rheumatoid arthritis and spondyloarthritis but not in osteoarthritis. In vivo and in vitro data suggest that the shedding is driven by TNF-α, which links the process to central events in the inflammatory response. The shed complexes contain multiple heterodimers of CD11/CD18, are variable in size, and differ according to the type of synovial inflammation. Furthermore, the differential structures determine the avidity of binding of the complexes to the ICAM-1. With the estimated concentrations of CD11/CD18 in plasma and synovial fluid a significant coverage of binding sites in ICAM-1 for CD18 integrins is expected. Based on cell adhesion experiments in vitro, we hypothesize that the large soluble complexes of CD11/CD18 act in vivo to buffer leukocyte adhesion by competing with the membrane-bound receptors for ICAM-1 binding sites. As reported here for synovial inflammation changes in the concentration or structure of these complexes should be considered as likely contributors to disease activity.
Read full abstract