The types and mechanisms of atrazine-metolachlor toxicity, an herbicide composed of atrazine (ATR) and metolachlor (MET), need to be further investigated. This study evaluated the toxic actions of ATR-MET by in vivo and in silico methods. Here, varying doses of ATR-MET were orally administered to rats once daily for twenty-one days using normal saline as control. Molecular docking was used to characterize the binding of ATR and MET with androgen receptor (AR) to predict their potential endocrine-disrupting effects, using testosterone as benchmark. ATR-MET-induced-testicular toxicity (reduced sperm motility, count, and daily sperm production and increased live/dead ratio) was accompanied with testicular oxidative stress (diminished level of reduced glutathione, activities of glutathione-S-transferase, superoxide dismutase and catalase and increased level of malondialdehyde). Furthermore, ATR-MET induced cardiovascular toxicity (increased levels of plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides) with concomitant induction of renal toxicity (increased plasma creatinine and urea levels), and hepatotoxicity (increased plasma bilirubin, alkaline phosphatase, acid phosphatase, alanine aminotransferase and aspartate aminotransferase). Binding energy and amino acid interactions from in silico study revealed that MET possessed endocrine-disrupting capacity. In conclusion, exposure to atrazine-metolachlor could promote cardiovascular, renal, hepatic, as well as reproductive impairment in experimental male albino rats.
Read full abstract