Changes in glycans expression have been associated with defects in blood platelet counts. However, the role of posttranslational modifications on platelet production is poorly understood. Six genes encoding sialyltransferases (ST)3Gal-I to -VI that form a2-3 sialic acid linkage have been identified in the mammalian genome, and deletion of St3gal1 and St3gal4 genes has been associated with macrothrombocytopenia in mice. We and others have shown previously that St3gal4-null platelets are cleared by the hepatic Ashwell-Morell receptor. Loss of ST3Gal-I activity has been associated with core 1 O-glycan Galβ1-3GalNAcα1-Ser/Thr expression, also known as tumor-associated or Thomsen-Friedenreich antigen (T antigen). We here investigated the detailed mechanisms of macrothrombocytopenia associated with St3gal1 deficiency by generating St3gal1loxP/PF4+ mice that lack ST3Gal-I specifically in the megakaryocyte (MK) lineage. Blood platelet counts were reduced by ~50% in St3gal1loxP/PF4+ mice, compared to control mice. Other blood cell counts were normal in St3gal1loxP/PF4+ mice. The clearance rate of St3gal1-null platelets was increased by ~15%, as determined by in vivo platelet biotinylation. Bone marrow MK numbers were normal in St3gal1loxP/PF4+ mice, compared to control mice, indicating that mechanisms other than clearance regulate circulating platelet counts in St3gal1loxP/PF4+ mice. Both St3gal1loxP/PF4+ platelets and bone marrow MKs had increased T antigen expression, as evidenced by flow cytometry using peanut agglutinin (PNA) binding. St3gal1loxP/PF4+ mice had increased bone marrow macrophage numbers, as evidenced by immunohistochemistry and flow cytometry using the macrophage marker F4/80. Macrophages in St3gal1loxP/PF4+ mice had increased expression of CD68 (macrosialin), as determined by immunohistochemistry and flow cytometry, indicative of an activated macrophage state. Consistently, St3gal1loxP/PF4+ bone marrow smears stained with May-Grunwald/Giemsa revealed increased hemophagocytosis. Macrophage ablation by in vivo injection of clodronate-encapsulated liposomes normalized blood platelet counts and size, and significantly reduced the numbers of activated macrophages in St3gal1loxP/PF4+ mice. Together, our data indicates that platelet production in the bone marrow is reliant on correct glycosylation on MK surface proteins and that the intimate interaction between MKs and macrophages play an important role in regulating platelet production and bone marrow homeostasis. DisclosuresNo relevant conflicts of interest to declare.
Read full abstract