Owing to large bandgaps of BAlN and AlGaN alloys, their heterojunctions have the potential to be used in deep ultraviolet and power electronic device applications. However, the band alignment of such junctions has not been identified. In this work, we investigated the band-offset parameters of a B0.14Al0.86 N/Al0.7Ga0.3N heterojunction grown by metalorganic vapor phase epitaxy. These specific compositions were chosen to ensure a sufficiently large band offset for deep ultraviolet and power electronic applications. High resolution transmission electron microscopy confirmed the high structural quality of the heterojunction with an abrupt interface and uniform element distribution. We employed high resolution X-ray photoemission spectroscopy to measure the core level binding energies of B 1s and Ga 2p3/2 with respect to the valence band maximum of B0.14Al0.86N and Al0.7Ga0.3N layers, respectively. Then, we measured the energy separation between the B 1s and Ga 2p3/2 core levels at the interface of the heterojunction. The valence band offset was determined to be 0.40 ± 0.05 eV. As a consequence, we identified a staggered-gap (type-II) heterojunction with the conduction band offset of 1.10 ± 0.05 eV. The determination of the band alignment of the B0.14Al0.86N/Al0.7Ga0.3N heterojunction facilitates the design of optical and electronic devices based on such junctions.
Read full abstract