One of the major concerns of pavement durability is its susceptibility to moisture damage. In this investigation, non-destructive test NDT has been implemented to detect the moisture damage issue. Asphalt concrete specimens were prepared using the traditional Marshall method for wearing, binder and asphalt stabilized base course. Specimens were traversed by ultrasound pulse velocity before and after practicing the moisture damage procedure. The variation of dynamic and elastic modulus before and after the moisture damage was considered and related to tensile strength ratio TSR. It was noted that the pulse velocity decline by (11, 11.2 and 16.4) % and the dynamic modulus declines by (28, 6.6 and 28.5) % for asphalt concrete wearing, binder and base courses respectively after moisture damage. The elastic modulus exhibits no significant variation after moisture damage for wearing course while it declines by (9 and 11.7) % for binder and base courses respectively after moisture damage. It was concluded that the elastic and dynamic moduli were unable to clearly distinguish the impact of moisture damage, whereas the Seismic modulus calculated from the Ultrasonic Pulse Velocity test was effective in distinguishing such impact. The linear equation obtained with good coefficient of determination can explain 74 % of the variation in the seismic modulus after moisture damage.