Quaternary ammonium-graphite intercalation compounds (QA+-GICs) are promising negative electrode materials in dual-carbon batteries by virtue of safety, low cost, and environmental friendliness. However, the intercalation behavior of QA+ into graphite electrodes in mixed solvents has never been reported. Herein, spiro-(1,1')-bipyrrolidinium tetrafluoroborate dissolved in a dimethyl/propylene carbonate (DMC/PC) binary solvent system was employed in graphite/activated carbon (AC) capacitors. The storage behavior of the spiro-(1,1')-bipyrrolidinium cation into graphite is very related to the solvent composition of the electrolyte solutions. In situ X-ray diffraction tests revealed that the graphite electrodes can form different QA+-GICs during cycling, which is a key factor influencing the electrochemical performance of graphite/AC capacitors. Besides, the reversible thickness change of graphite in graphite/AC capacitors with different electrolytes during the charge-discharge process was also addressed. These findings provide sound evidence for the co-intercalation of the solvent with the cation.
Read full abstract