We extend our 2+1 -dimensional discrete growth model [Odor, Phys. Rev. E 79, 021125 (2009)] with conserved, local exchange dynamics of octahedra, describing surface diffusion. A roughening process was realized by uphill diffusion and curvature dependence. By mapping the slopes onto particles, two-dimensional nonequilibrium binary lattice model emerges, in which the (smoothing or roughening) surface diffusion can be described by attracting or repelling motion of oriented dimers. The binary representation allows simulations on very large size and time scales. We provide numerical evidence for Mullins-Herring or molecular-beam epitaxy class scaling of the surface width. The competition of inverse Mullins-Herring diffusion with a smoothing deposition, which corresponds to a Kardar-Parisi-Zhang (KPZ) process, generates different patterns: dots or ripples. We analyze numerically the scaling and wavelength growth behavior in these models. In particular, we confirm by large size simulations that the KPZ type of scaling is stable against the addition of this surface diffusion, hence this is the asymptotic behavior of the Kuramoto-Sivashinsky equation as conjectured by field theory in two dimensions, but has been debated numerically. If very strong, normal surface diffusion is added to a KPZ process, we observe smooth surfaces with logarithmic growth, which can describe the mean-field behavior of the strong-coupling KPZ class. We show that ripple coarsening occurs if parallel surface currents are present, otherwise logarithmic behavior emerges.
Read full abstract