To automatically threshold images with unimodal, bimodal, multimodal or non-modal gray level distributions within a unified framework, an automatic thresholding method using single information entropy under the product transformation of order difference filter response is proposed. The proposed method first performs the product transformation of order difference filter response on an input image at different scales to obtain the product transformation image. Critical or non-critical pixels are labelled on each pixel of the binary images corresponding to different thresholds to construct a series of binary label images that are used for distinguishing critical or non-critical regions. A single information entropy is finally used for characterizing the information obtained from the product transformation image with the critical regions of different binary label images, and the threshold corresponding to maximum information entropy is selected as final threshold. The proposed method is compared with seven state-of-the-art segmentation methods. Experimental results on 12 synthetic images and 98 real-world images show that the average Matthews correlation coefficients of the proposed method reached 0.994 and 0.966 for the synthetic images and the real-world images, which outperform the second-best method by 52.4 % and 27.8 %, respectively. The proposed method has more robust segmentation adaptability to test images with different modalities, despite not offering an advantage in terms of computational efficiency.