Previous studies have attempted to separate single trial neural responses for events a person is likely to remember from those they are likely to forget using machine learning classification methods. Successful single trial classification holds potential for translation into the clinical realm for real-time detection of memory and other cognitive states to provide real-time interventions (i.e., brain-computer interfaces). However, most of these studies—and classification analyses in general— do not make clear if the chosen methodology is optimally suited for the classification of memory-related brain states. To address this problem, we systematically compared different methods for every step of classification (i.e., feature extraction, feature selection, classifier selection) to investigate which methods work best for decoding episodic memory brain states—the first analysis of its kind. Using an adult lifespan sample EEG dataset collected during performance of an episodic context encoding and retrieval task, we found that no specific feature type (including Common Spatial Pattern (CSP)-based features, mean, variance, correlation, features based on AR model, entropy, phase, and phase synchronization) outperformed others consistently in distinguishing different memory classes. However, extracting all of these feature types consistently outperformed extracting only one type of feature. Additionally, the combination of filtering and sequential forward selection was the optimal method to select the effective features compared to filtering alone or performing no feature selection at all. Moreover, although all classifiers performed at a fairly similar level, LASSO was consistently the highest performing classifier compared to other commonly used options (i.e., naïve Bayes, SVM, and logistic regression) while naïve Bayes was the fastest classifier. Lastly, for multiclass classification (i.e., levels of context memory confidence and context feature perception), generalizing the binary classification using the binary decision tree performed better than the voting or one versus rest method. These methods were shown to outperform alternative approaches for three orthogonal datasets (i.e., EEG working memory, EEG motor imagery, and MEG working memory), supporting their generalizability. Our results provide an optimized methodological process for classifying single-trial neural data and provide important insight and recommendations for a cognitive neuroscientist's ability to make informed choices at all stages of the classification process for predicting memory and other cognitive states.
Read full abstract