The partial mixing enthalpy of nickel in ternary liquid Cu-Fe-Ni alloys is studied at 1873 K along sections characterized by ratios xCu: xFe = 3, 1, and 1/3 at xNi = 0–0.55. The investigations are undertaken using a high-temperature isoperibolic calorimeter. The temperature and composition dependence of the excess mixing Gibbs energy of liquid Cu-Fe-Ni alloys are described in terms of the Muggianu-Redlich-Kister model using the data obtained, the literature data on the activities of liquid alloy components, and the thermodynamic properties of melts of the boundary binary systems. This model is used to calculate isotherms of the thermodynamic properties of the liquid alloys over the entire composition range. The contribution of a ternary interaction to the integral mixing enthalpy of liquid Cu-Fe-Ni alloys is found to be mainly positive.
Read full abstract