In this work, a kernel principle component analysis network (KPCANet) is proposed for classification of the facial expression in unconstrained images, which comprises only the very basic data processing components: cascaded kernel principal component analysis (KPCA), binary hashing, and block-wise histograms. In the proposed model, KPCA is employed to learn multistage filter banks. It is followed by simple binary hashing and block histograms for indexing and pooling. For comparison and better understanding, We have tested these basic networks extensively on many benchmark visual datasets ( such as the JAFFE [13] database, the CMU AMP face expression database, a part of the Extended Cohn-Kanade (CK+) database), The results demonstrate the potential of the KPCANet serving as a simple but highly competitive baseline for facial expression recognition.
Read full abstract