Binary black hole spin measurements from gravitational wave observations can reveal the binary's evolutionary history. In particular, the spin orientations of the component black holes within the orbital plane, ϕ_{1} and ϕ_{2}, can be used to identify binaries caught in the so-called spin-orbit resonances. In a companion paper, we demonstrate that ϕ_{1} and ϕ_{2} are best measured near the merger of the two black holes. In this work, we use these spin measurements to provide the first constraints on the full six-dimensional spin distribution of merging binary black holes. In particular, we find that there is a preference for Δϕ=ϕ_{1}-ϕ_{2}∼±π in the population, which can be a signature of spin-orbit resonances. We also find a preference for ϕ_{1}∼-π/4 with respect to the line of separation near merger, which has not been predicted for any astrophysical formation channel. However, the strength of these preferences depends on our prior choices, and we are unable to constrain the widths of the ϕ_{1} and Δϕ distributions. Therefore, more observations are necessary to confirm the features we find. Finally, we derive constraints on the distribution of recoil kicks in the population and use this to estimate the fraction of merger remnants retained by globular and nuclear star clusters. We make our spin and kick population constraints publicly available.