Methane adsorption on a microporous carbon adsorbent with a bimodal pore size distribution is studied at temperatures of 303–333 K at pressures up to 30 MPa. The total micropore volume of the adsorbent, as determined by the Dubinin method, is as large as 1.02 cm3/g. Maximum values of methane adsorption of ≈18 mmol/g are attained at a temperature of 303 K and a pressure of 30 MPa. Methane adsorption isosteres are plotted based on experimental data, and adsorption equilibria at low temperatures are calculated using the linearity of the plots. Experimental isotherms of methane adsorption are compared with the isotherms calculated by the Dubinin–Nikolaev equation with variations in parameters E and n. Temperature dependences of these parameters are determined. Specific characteristics of methane adsorption accumulation are calculated.
Read full abstract