Precious metal-free NiMoM (M = Pr2O3, Cu2O) catalysts have been synthesized through a simple coreduction method, without any surfactant or support material, and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The resultant Pr2O3- or Cu2O-modified NiMo catalysts exhibit different structures, which is due to a difference in the synergistic effects of NiMo and the modifying elements. NiMoPr2O3 has an amorphous structure, with low crystallinity and uniform particle dispersion, while NiMo@Cu2O adopts the core–shell structure, where the core and shell are synergistic with each other to promote electron transfer efficiency. The support material-free nanocatalysts Ni9Mo1(Pr2O3)0.375 and Ni4Mo@Cu2O are both highly efficient compared with bimetallic NiMo catalysts, in terms of hydrogen generation from hydrous hydrazine (N2H4·H2O) at 343 K, with total turnover frequencies (TOFs) of 62 h−1 and 71.4 h−1, respectively. Their corresponding activation energies (Ea) were determined to be 43.24 kJ mol−1 and 46.47 kJ mol−1, respectively. This is the first report on the use of Pr-modified NiMo and core–shell NiMo@Cu2O catalysts, and these results may be used to promote the effective application of noble metal-free nanocatalysts for hydrogen production from hydrous hydrazine.
Read full abstract