TiO2–FeZn nanocatalyst combined with sonolysis were used to activate peroxymonosulfate (PMS) as a highly efficient advanced oxidation process (US/TiO2–FeZn/PMS) for the decoloration of orange II dye (OII) and real textile wastewater. The characterization of the as-synthesized NPs was performed by SEM, FTIR, EDX and XRD analyses. Optimal experimental conditions of operational parameters were obtained: pH = 3, 15 mg/L initial OII concentration, 0.2 g/L PMS, 0.7 g/L nanocatalyst dosing, and 300 W ultrasonic power. The decolorization was observed to increase with increasing the dose of nanocatalyst and the ultrasonic power, and with decreasing pH (under acidic conditions). Under optimal experimental conditions, decolorization and COD removal of textile wastewater were 99.9% and 74.6%, respectively, at 40 min. The TiO2–FeZn/PMS/US as a novel process exhibited a higher removal of OII (95%) than TiO2 NPs/PMS/US process (54%). The OII removal efficiency by the different processes decreased in the following order: TiO2–FeZn/US/PMS > TiO2–FeZn/PMS > TiO2–FeZn/US > TiO2 /US/PMS > US/PMS > TiO2–FeZn > PMS > US. The recyclability study revealed that the process could be reused up to three consecutive cycles. The current US/nanocatalyst/PMS system was concluded to be an efficient, reusable and stable nanocatalyst for the oxidation of textile dyes.
Read full abstract