Unconjugated bilirubin (UCB) is a byproduct of the heme group that indicates irregularities in the metabolism of several important biological molecules, such as hemoglobin. UCB is processed by hepatic UGT1A1, which catalyzes its conjugation to the metabolites bilirubin diglucuronide (BDG) and bilirubin monoglucuronide (BMG). The serum concentrations of BDG and BMG may indicate liver injury or dysfunction. The aim of this study was to standardize and validate a method for the identification and simultaneous quantification of BMG, BDG and UCB by LC‒MS/MS. Liquid‒liquid extraction allows the separation of UCB, BMG and BDG from the serum of healthy subjects or patients with liver injury. Detection and quantification were performed using an LC‒MS/MS method. Compound separation was achieved with a BEH-C18 column at 40°C. The mobile phase was prepared with 5 mM ammonium acetate (pH 6) and acetonitrile, and a flow gradient was applied. This is the first study to directly quantify BMG and UCB levels in human serum; no postcalculations or correction factors are needed. However, BDG quantification requires calculations and a correction factor. We identified the molecular species with ionic transitions m/z1+ 585.4 > 299.2 for UCB, 761.3 > 475.3 for BMG, 937.3 > 299.5 for BDG and mesobilirubin 589.4 > 301.3 (IS). The procedures used in this study allowed the simultaneous identification and quantification of the molecular species of bilirubin, BDG, BMG and UCB. Analysis of the serum levels in patients with hyperbilirubinemia revealed that patients with acute-on-chronic liver failure had elevated levels of these species.
Read full abstract