Light dark matter aims at explaining the 511 keV γ-ray line emission from the galactic bulge as well as cold dark matter in our universe. The former is achieved via the annihilations or decays of light dark matter particles, which implies interesting observational consequences in addition to 511 keV γ-rays. We consider the axino in the 1 ~ 10 MeV mass range as the light dark matter particle and discuss the particle physics models for it, its cosmological production, and its decay arising from R-parity violation. For additional observational signals, we consider the connection to the neutrino data made by bilinear R-parity violations and the continuum γ-ray emission from light dark matter particles.