Because hyperhomocysteinemia can occur in cholesterol gallstone disease, we hypothesized that this may result from trimethylation of phosphatidylethanolamine (PE), which partakes in biliary phosphatidylcholine (PC) hypersecretion during cholesterol cholelithogenesis. We fed murine strains C57L/J, C57BL/6J, SWR/J, AKR/J, PE N-methyltransferase (PEMT) knockout (KO), PEMT heterozygous (HET), and wildtype (WT) mice a cholesterol/cholic acid lithogenic diet (LD) for up to 56 days and documented biliary lipid phase transitions and secretion rates. We quantified plasma total homocysteine (tHcy), folate, and vitamin B12 in plasma and liver, as well as biliary tHcy and cysteine secretion rates. Rate-limiting enzyme activities of PC synthesis, PEMT and cytidine triphosphate: phosphocholine cytidylyltransferase (PCT), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured in liver homogenates. Other potential sources of plasma tHcy, glycine N-methyltransferase (GNMT) and guanidinoacetate N-methyltransferase (GAMT), were assayed by gene expression. Plasma tHcy and PEMT activities became elevated during cholelithogenesis in gallstone-susceptible C57L, C57BL/6, and SWR mice but not in the gallstone-resistant AKR mice. Persisting in C57L mice, which exhibit the greatest Lith gene burden, these increases were accompanied by elevated hepatic SAM/SAH ratios and augmented biliary tHcy secretion rates. Counter-regulation included remethylation of Hcy to methionine concurrent with decreased folate and vitamin B12 levels and Hcy transsulfuration to cysteine. Concomitantly, methylenetetrahydrofolate reductase (Mthfr), betaine-homocysteine methyltransferase (Bhmt), and cystathionine-β-synthase (Cbs) were up-regulated, but Gnmt and Gamt genes were down-regulated. PEMT KO and HET mice displayed biliary lipid secretion rates and high gallstone prevalence rates similar to WT mice without any elevation in plasma tHcy levels. This work implicates up-regulation of PC synthesis by the PEMT pathway as a source of elevated plasma and bile tHcy during cholesterol cholelithogenesis.
Read full abstract