A novel amphiphilic guanidyl-functionalized stigmasterol hydrochloride (GFSH) was designed and synthesized as bile salt sequestrants for cholesterol reduction. GFSH exhibited a considerable in vitro capacity for bile salt binding in gastrointestinal digestion and alleviated hypercholesterolemia in vivo. GFSH spontaneously interacted with sodium cholate via synergistic electrostatic, hydrophobic, and hydrogen-bonding interactions. The effects of GFSH on serum cholesterol reduction in mice fed a high-fat-high-cholesterol diet were explored by measuring the expression of key transcription factors related to bile acid metabolism. GFSH produced a dose-dependent reduction in weight gain, hepatic fat accumulation, and fecal and blood markers. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analyses demonstrated GFSH-induced expression of hepatic CYP7A, LXRα, and LDL-R. GFSH exerts the cholesterol-lowering activity by inducing the bile acid metabolism.