Abstract
In this study, a new component of Cyclocarya paliurus polysaccharides (CPP20) was precipitated by the gradient ethanol method, and the protective effect of CPP20 on hypercholesterolemia mice was investigated. In vitro, CPP20 had the ability to bind bile salts and inhibit cholesterol micelle solubility, and it could effectively clear free radicals (DPPH•, •OH, and ABTS+). In vivo, CPP20 effectively alleviated hypercholesterolemia and liver damage in mice. After CPP20 intervention, the activity of antioxidant enzymes (SOD, CAT, and GSH-Px) and the level of HDL-C in liver and serum were increased, and the activity of aminotransferase (ALT and AST) and the level of MDA, TC, TG, LDL-C, and TBA were decreased. Molecular experiments showed that CPP20 reduced cholesterol by regulating the mRNA expression of antioxidation-related genes (SOD, GSH-Px, and CAT) and genes related to the cholesterol metabolism (CYP7A1, CYP27A1, SREBP-2, HMGCR, and FXR) in liver. In addition, CPP20 alleviated intestinal microbiota disturbances in mice with hypercholesterolemia and increased levels of SCFAs. Therefore, CPP20 alleviates hypercholesterolemia by alleviating oxidative damage, maintaining cholesterol homeostasis, and regulating gut microbiota.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.