Lipid nanoparticles (LNPs) are emerging as one of the most promising drug delivery systems. The long-circulating effect of intact LNPs (i-LNPs) is the key to efficacy and toxicity in vivo. However, the significant challenge is specific and sensitive detection of i-LNPs. Herein, a dual-recognition fluorescence enzyme-linked immunosorbent assay (DR-FELISA) was developed to directly isolate and detect i-LNPs by combining dual-recognition separation with a one-step signal amplification strategy. The microplates captured and enriched i-LNPs through antibody-antigen reaction. Dual-chol probes were spontaneously introduced into the lipid bilayer of captured i-LNPs, converting the detection of i-LNPs into the detection of double-cholesterol probes. Finally, the end of the dual-chol probes initiated the localized scaffolding autocatalytic DNA circuits (SADC) system for further signal amplification. The SADC system provides a sensitive and efficient amplifier through localized network structures and self-assembled triggers. Simultaneous recognition of i-LNPs surface PEG-lipid and lipid bilayer structures significantly eliminates interference from biological samples. i-LNPs were detected with high selectivity, ranging from 0.2 to 1.25 mg/mL with a limit of detection of 0.1 mg/mL. Moreover, this method allows the isolation and quantitative analysis of different formulations of i-LNPs in serum samples with a satisfactory recovery rate ranging from 94.8 to 116.3%. Thus, the DR-FELISA method provides an advanced platform for the exclusive and sensitive detection of i-LNPs, providing new insights for the study of the quality and intracorporal process of complex formulations.