Two mechanisms are operative when the resting shape of human red cells is changed into an echinocyte or a stomatocyte. The first (bilayer couple) is a differential change in the surface area of the two monolayers. It rests on the two-dimensional isotropic elasticity of the two monolayers and their fixed distance. The second (single layer) is a change in the average cone angle of the molecules comprising a monolayer. It rests on the intrinsic bending elasticity of each single layer. With a few exceptions the first mechanism has been quoted to interpret experimentally observed shape changes. To reconsider this preference two types of spontaneous curvatures (in bilayer couple bending and in single-layer bending) are defined. It is shown that (a) disregarding the single-layer mechanism is not justified and (b) there is too little basic information for quantitative interpretations of shape change.