PHN is one of the most common clinical complications of herpes zoster (HZ), the pathogenesis of which is unclear and poorly treated clinically, and many studies now suggest that postherpetic neuralgia (PHN) pain may be related to central neurologic mechanisms. This study aimed to investigate the white matter structural networks and changes in the organization of the rich-club in HZ and PHN. Diffusion imaging (DTI) data from 89 PHN patients, 76 HZ patients, and 66 healthy controls (HCs) were used to construct corresponding structural networks. Using graph-theoretic analysis, changes in the overall and local characteristics of the structural networks and rich-club organization were analyzed, and their correlations with clinical scales were analyzed. Compared with HCs, PHN patients had reduced global efficiency (Eg), reduced local efficiency (Eloc), a reduced clustering coefficient (Cp), a longer characteristic path length (Lp), and reduced nodal efficiency (Ne) in several brain regions, including the right posterior cingulate gyrus, the right supraoccipital gyrus, the bilateral postcentral gyrus, and the right precuneus; HZ patients had reduced Eg, a longer Lp, and reduced right orbital frontalis suprachiasmatic Ne. Moreover, HZ and PHN patients showed a significant reduction in the strength of rich-club connections. Compared with HZ patients, the intensities of the rich-club and feeder connections were lower in the PHN patients. Moreover, the changes in the structural networks and rich-club organization topology indices of the patients in the HZ and PHN patients were significantly correlated with disease duration, pain scores, and emotional changes. The structural networks of HZ and PHN patients exhibited reduced network transmission efficiency and rich-club connectivity, possibly due to structural damage to the white matter, and this was more obvious in PHN patients. The rich-club connectivity of HZ patients showed incomplete compensation in the acute pain stage.
Read full abstract