In this paper, we study a p(x)-biharmonic equation with Navier boundary condition \t\t\t{Δp(x)2u+a(x)|u|p(x)−2u=λf(x,u)+μg(x,u)in Ω,u=Δu=0on ∂Ω.\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} \\Delta^{2}_{p(x)}u+a(x)|u|^{p(x)-2}u= \\lambda f(x,u)+\\mu g(x,u)\\quad \\text{in } \\Omega, \\\\ u=\\Delta u=0 \\quad \\text{on } \\partial\\Omega. \\end{cases} $$\\end{document} Here Omegasubsetmathbb{R}^{N} (Ngeq1) is a bounded domain with smooth boundary ∂Ω, Delta^{2}_{p(x)}u is a p(x)-biharmonic operator with p(x) in C(overline{Omega}), p(x)>1. lambda,muinmathbb{R}, ain L^{infty}(Omega) such that inf_{xinOmega}a(x)=a^{-}>0. By variational methods, we establish the results of existence and non-existence of solutions.
Read full abstract