The structure transition of metallic melt strongly depends on temperature and significantly influences the comprehensive properties. However, observing the structure change in experiments is still challenging. Here, molecular dynamics is used to study the melting process and microstructural evolution in single crystal and polycrystal cobalt (Co). The results indicate that the melting process of single crystal structure starts from 1870 K and lasts for a very short period, while the polycrystal melts from about 1760 to 1870 K. In polycrystal Co, the melting initially occurs in grain boundaries, and the melting temperature shows a positive correlation with grain size. An interesting solidification phenomenon occurs on the surface of big grains in the beginning of melting process. The coordination number increasing from 12 to about 13.4 near melting point proves the local expansion of the first coordination shell, indicating the structural evolution from long-range order to short-range order in the continuous heating process. The common neighbor sub-cluster index and Voronoi polyhedron demonstrate the short-range icosahedron structures, while these polyhedrons become polydisperse and isolated in Co liquid. The findings ignite the investigation of the liquid structure origin of crystal materials and extend the understanding of the atomic structure evolution in melting.
Read full abstract