<p style='text-indent:20px;'>In this paper, we consider the number of limit cycles of the Li<inline-formula><tex-math id="M2">\begin{document}$ \acute{e} $\end{document}</tex-math></inline-formula>nard system of the form <inline-formula><tex-math id="M3">\begin{document}$ \dot{x} = y, \ \dot{y} = -x(x^2+bx-1)+\varepsilon f_{m}(x)y $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M4">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ f_{m}(x) = \sum_{i = 0}^m a_{i}x^{i} $\end{document}</tex-math></inline-formula> is a polynomial of <inline-formula><tex-math id="M6">\begin{document}$ x $\end{document}</tex-math></inline-formula> with degree not greater than <inline-formula><tex-math id="M7">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ 0&lt;\varepsilon \ll 1 $\end{document}</tex-math></inline-formula>. By studying the number of isolated zeros of the corresponding Abelian integral <inline-formula><tex-math id="M9">\begin{document}$ I(h) = \oint_{L_{h}}f_{m}(x)ydx, $\end{document}</tex-math></inline-formula> we obtain the upper bound of the number of limit cycles that bifurcated from periodic orbits of the unperturbed system for <inline-formula><tex-math id="M10">\begin{document}$ \varepsilon = 0 $\end{document}</tex-math></inline-formula>.</p>