As the main gatekeeper of the nucleocytoplasmic transport in eukaryotic cells, the nuclear pore complex (NPC) faces the daunting task of facilitating the bidirectional transport of a high volume of macromolecular cargoes while ensuring the selectivity, speed, and efficiency of this process. The competition between opposing nuclear import and export fluxes passing through the same channel is expected to pose a major challenge to transport efficiency. It has been suggested that phase separation-like radial segregation of import and export fluxes within the assembly of intrinsically disordered proteins that line the NPC pore could be a mechanism for ensuring efficient bidirectional transport. We examine the impact of radial segregation on the efficiency of bidirectional transport through the NPC using a coarse-grained computational model of the NPC. We find little evidence that radial segregation improves transport efficiency. By contrast, surprisingly, we find that NTR crowding may enhance rather than impair the efficiency of bidirectional transport although it decreases the available space in the pore. We identify mechanisms of this novel crowding-induced transport cooperativity through the self-regulation of cargo density and flux in the pore. These findings explain how the functional architecture of the NPC resolves the problem of efficient bidirectional transport, and provide inspiration for the alleviation of clogging in artificial selective nanopores.