The study of nicotine addiction mechanism is of great significance in both nicotine withdrawal and brain science. The detection of addiction-related brain connectivity using functional magnetic resonance imaging (fMRI) is a critical step in study of this mechanism. However, it is challenging to accurately estimate addiction-related brain connectivity due to the low-signal-to-noise ratio of fMRI and the issue of small sample size. In this work, a prior-embedding graph generative adversarial network (PG-GAN) is proposed to capture addiction-related brain connectivity accurately. By designing a dual-generator-based scheme, the addiction-related connectivity generator is employed to learn the feature map of addiction connection, while the reconstruction generator is used for sample reconstruction. Moreover, a bidirectional mapping mechanism is designed to maintain the consistency of sample distribution in the latent space so that addiction-related brain connectivity can be estimated more accurately. The proposed model utilizes prior knowledge embeddings to reduce the search space so that the model can better understand the latent distribution for the issue of small sample size. Experimental results demonstrate the effectiveness of the proposed PG-GAN.
Read full abstract