Abstract
Inspired by visual-tactile cross-modal bidirectional mapping of the human brain, this paper introduces a novel approach to bidirectional mapping between visual and tactile data, an area not fully explored in the predominantly unidirectional existing studies. First, we adopt separate Variational AutoEncoder (VAE) models for visual and tactile data. Furthermore, we introduce a conditional flow model built on the VAE latent feature space, enabling cross-modal bidirectional mapping between visual and tactile data using one model. The experimental results show that our method achieves excellent performance in terms of the similarity between the generated data and the original data (Structural Similarity Index (SSIM) of visual data: 0.58, SSIM of tactile data: 0.80), the classification accuracy on generated data (visual data: 91.60%, tactile data: 88.05%), and the zero-shot classification accuracy between generated data and language (visual data: 44.49%, tactile data: 45.03%). To the best of our knowledge, the method proposed in this paper is the first one to utilize a single model to achieve bidirectional mapping between visual and tactile data. Our model and code will be made public after the acceptance of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.