BackgroundConverging evidence points to the crucial role of brain connectivity involved in aberrant behavioral control and reward reactivity in the onset and maintenance of binge eating. However, the directional interaction pattern between brain's reward and inhibitory control systems in people with binge eating episodes is largely unknown. MethodsResting-state fMRI data were collected from 36 adults with binge eating episodes (age: 19.05 ± 0.90) and 36 well-matched controls (age: 18.88 ± 0.78). We applied spectral dynamic causal modeling approach to estimate effective connectivity of the executive control network (ECN) and reward network (RN) with 15 predefined regions of interest, and investigate the between-group differences in directional connectivity. ResultsCompared with controls, the positive connections within the ECN were significantly strengthened in individuals with binge eating episodes, while the negative connections from the ECN to RN and from the RN to ECN were significantly weakened. In adults with binge eating episodes, the RN→ECN connectivity was positively related to binge frequency even controlling for age, sex, and body mass index. ConclusionThis study represents an important first step in addressing the role of directional integration between reward and inhibitory control networks in binge eating, and provides novel evidence that the ability of people with binge eating episodes to maintain a balance between inhibitory control and reward reactivity is decreased, as reflected by diminished bidirectional negative effects of prefrontal-subcortical circuitry at rest.
Read full abstract